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Effect of two-temperature electron distribution on the Bohm sheath criterion
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The effect of two-temperature electron distribution on the Bohm sheath criterion is studied in a collisionless
sheath layer in contact with a perfectly absorbing wall. A modified Maxwell-Boltzmann model is used for the
electron distribution functions, which considers the effect that the electrons above the sheath potential energy
do not reflect back into the plasma. The present model shows that the Bohm velocity at the sheath edge is much
more independent of the hotter species than what was understood previously with a simple Maxwell-
Boltzmann electron modelS1063-651X96)01611-X]

PACS numbegs): 52.40.Hf

In many plasma devices, the electron velocity distributionfor the energetic species. In the present work, we study the
may not be a simple Maxwellian. Often, the electrons argwo-temperature electron problem with the consideration of
found to have two-temperature Maxwellian distributionsthe lost electrons, which have greater energy than the sheath
[1-3]. Understanding the effect of two temperature electrorpotential energy, and are not bounced back by the sheath
distribution on the Bohm speed has been of significant im{otential. The model distribution function of the electrons we
portance because the Bohm speed enters as a boundary c6foose Wwill be based upon the Maxwell-Boltzmann form,
dition in plasma modelings, determining the loss rate to thavith the elimination of the lost electron part in velocity
wall. space.

Previous analytic studies of Bohm sheath in a two- Inorderto use a kinetic formulation of Bohm sheath cri-
electron-species plasma used a simple Maxwell-Boltzmanterion[4,7], we follow Ref.[7] and introduce the following
distribution to model each electron species in the sheatfimensionless quantities:
layer [4,5]. This model may be justified under the assump-
tion that each electron species is in the state of local thermal miv2 eU N, X
equilibrium. The model showed that the Bohm speed in a yzﬁ, X= "1 ne,izN—’,
plasma with two-species electrons is equal to that with one e e 0
electron species plasma whose temperature is equal to the
harmonic average of the two temperature. wherey is thex-directional ion kinetic energy normalized to

However, in a thin sheath layer, where the electron meaithe electron thermal enerdyT,, x is the electron potential
free path is longer than the sheath thickness, the local theenergy normalized t&T,, v, is the particle speed toward
mal equilibrium assumption may not be justified. In order tothe wall, n is the particle density normalized to be unity at
have a more accurate understanding of the Bohm speed inthe sheath edge, aridis the space coordinate normalized
plasma with two-temperature electron distribution, a moreto the electron Debye length. In the present work, we set
realistic model for the electron distribution function needs tou =0 at the sheath edge. The wall is locatedkatO and,
be considered. For plasmas with a single electron speciegius, the sheath edge isat .
this problem has been studied by Sgdf. He noticed that
some of the tail electrons, which are traveling toward an
absorbing wall with their energy greater than the sheath po-
tential energy, do not bounce back into the plagsee Fig. kT
1). He concluded that inclusion of this phenomenon does not
significantly affect the Bohm speed due to the smallness of
such electron fraction. Thus, the assumption of local thermal
equilibrium was approximately validated in a single-
electron-temperature problem, as far as the Bohm speed is
concerned.

In a plasma with two-temperature electrons, thermal en-
ergy of the more energetic electron species may be greater
than the sheath potential energy. In this case, the fraction of
the lost electrons which are not bounced back by the sheath
potential may be significant within the energetic species, and
the assumption of local thermal equilibrium may break down wall
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FIG. 1. Truncation of electron distribution function in a nonther-
"Also at Courant Institute of Mathematical Sciences, New Yorkmal equilibrium model. Absorbing wall is at=0 and the sheath is
University, New York, N.Y. formed atx>0.
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FIG. 2. Effective electron temperatur® from Boyd and FIG. 3. Effective electron temperatu@efrom nonthermal equi-
Thompson model as a function of the hot electron temperature nofiriym model for single-temperature electrons in terms of the nor-
malized to the cold electron temperature. malized sheath potentigj,, .

The Bohm sheath condition can be obtained from the ref,(x ;, y is a one dimensional solution to Vlasov equation,
quirement that the electric charge at the sheath edge is posjyen it is a function of energy,

tive [7],
Vst Zf]—u) @

fix,vy)="fio

dn, dng 0 !
= ——— =0.
Po dX dX |X=0 ( )
) ) where f;,=f;(0v,). Calculating ion density fronf;, we
The quantlty=—(dne/d)(|)(:0)‘l can be interpreted as fing
an effective temperature of the total electrons. For the ions,

the flow energy is generally dominant over the thermal en- , 2eu
ergy and the concept of effective temperature is not valid. ”iZJ fi(xuvx)dU:f fio| Yokt | dox
The above condidtion, Eq.l), can be easily obtained !
from Poisson’s equation using a similar technique used in 2eU)| 12
Ref. [7], :f 1- mo2 fio(vo)dug
iVo
d?x X -1/2
gz~ M0 TNl - 140 fowordus, 3

We multiply this equation byly/d¢ and integrate, with the wherev, is v, at the sheath edge agg= miv§/2kTe. Then,
boundary conditiong,dyx/dé —0 at the sheath eddevhich

means that the potential perturbation by the wall fades away dn; 1 KTe [ fio(vo)
at the sheath boundaryto obtain a|x=0: - j 2—y0fio(vo)dvo= i 2 dug.
L 0

4

The condition in Eq(1) can, then, be changed into

d 2
d_g zzfoxdx[ni(x)—ne(x)]-

We, then, Taylor expand the densitieg x) andn;(x) near m

=0 P ; —n. H <v;2>i0$—1 (5)
x=0, and apply the quasineutrality(0)=n;(0) to obtain OKT,
dy\? X dn dng where ( );p means velocity average over ion distribution
de :zfo dxx dy [¥=07 dy [¥=° function at the sheath edge. Wheén=1, this recovers the
usual Bohm sheath criterion in kinetic form.
o dn; dng Information on the effect of two-temperature electron dis-
=X a X:O_E x=0/ tribution on sheath criterion is contained in the effective tem-

perature. For heuristic purpose, let us first consider the ther-
near the sheath edge. From this equation we can see that Bgal equilibrium case when the electron distribution is simply
(1) must be satisfied. modeled with two-temperature Maxwell-Boltzmann. If we
The ion density gradient iry can be described from a use the notatiory,=m.2/2kT,, we have for the one-
kinetic knowledge we have: If the ion distribution function dimensional electron distribution functidy,
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FIG. 4. Effective electron temperatu@ from nonthermal equi- 3 L |
librium model, as a function of the hot electron temperatyneor-
malized to the cold electron temperature. Dotted lines are for
xw=3 and solid lines are fox,,=5. Top lines are fora=09, L _ _ _ _ _ _ _ _ _ _ . _ ___
middle lines fora=0.6, and bottom lines forr=0.3. 5 | i
fo(x,0)=C(e”Ver ¥+ ge~ Vet X)), (6) ©
where7(>1) is the temperature of the high energy electron 1 1” = Sme
species as a ratio to the low energy electron specie<asd /_\
a normalization constant. Integrating E§), we get
ne=f fedvze*)‘f Ce*VEvarae*X”?J' Ce Yeldy 0 ' : :
o o o 0 3 6 9
e Xt a\ne X7 (b) Xw

: (7
1+ a\/;
FIG. 5. Effective electron temperatuée as a function of sheath
which satisfies the normalization conditionng&1 at  potentialy,, (a) for =3 and(b) for =9. Straight lines represent

x=0), and yields the effective temperature the results of Boyd and Thompson model, and curved lines repre-
sent the present results. Dotted lines aredfer0.9, dashed lines for
(dne 1 1tayy a=0.6, and solid lines for=0.3.
O=—|—1,=0] =—+. (8)
dx ¥ 1+ a/\/; equal to that with one electron species plasma where tem-

perature is equal to the harmonic average of the two tempera-
This, together with Eq(5), was the previous sheath criterion tyres.

discussed in the literaturg4,5,7 for plasmas with two- However, in a collisionless sheath, the electrons flowing
electron components under the assumption of local thermab an absorbing wall with their energy above the sheath po-
equilibrium. The behavior 00 as a function ofyp is shown  tential energy will not bounce back by the sheath potential.
in Fig. 2 for a few different values o#. Thus, among the electrons traveling back into the plasma, the
It should be noticed that, in comparing the above kinetictail part of distribution function corresponding to the elec-
result with those of Ref44], [7], and[5], the density of the trons above the sheath potential energy should be truncated.
hot component normalized to the cold component in theSelf[6] discussed this truncation effect in the case of a single
present model is\/7 at the sheath edge. Then, the harmonicelectron species, concluding that it is small due to the fact

average of two temperature with density weighting, that the truncated fraction of the electron density is small at
a practical level of sheath potential energy. However, the

NctNp N +nh same cannot be guaranteed for the double-electron species

0T, T_e T_h case, in which the thermal energy of the hot species may be

above the sheath potential energy. Thus, a large fraction of
yields Eq.(8), wheren, is the density of cold electron com- the hot electron species may be lost to the absorbing wall,
ponent,n,=n.a /7 is the density of hot electron component not coming back into the plasma. The assumption of local
andT,,= 5T, is the temperature of the hot electron compo-thermal equilibrium may now become a poor choice for the
nent. Thus, the Bohm speed from a two-Maxwellian model ishot electron species.
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In order to put the truncation effect into the electron dis-be truncated. The one-dimensional electron distribution func-
tribution functions, we choose the following model for the tion may then be modeled as
electron distribution functions. We lgt,, denote the normal- .
ized sheath potential at the wall. If an electron is traveling to ‘- 0 if vi>0 and ¥ +x >xu ©
the wall with higher energy thap,,, then it will overcome e | C(e etV e~ et X)/7) otherwise
the sheath potential and get absorbed at the (edlally,
recombine with ions Thus, the part of the electron distribu- wherev,>0 corresponds to the direction toward the plasma.
tion function corresponding to the incoming electrons towardntegrating thisf in the velocity space, it is straightforward

the plasma at above the sheath potential engtgneeds to  to obtain

e 1+ erf(Vxw— x) 1+ e pe 1+ erf(V(xw— 1)/ )]

10
¢ e[ 1+ erf(\xw) ]+ avneXe 71+ erf(\xw/7)] 10

From thisng(x), we can calculate a new effective temperature
e[ 1terf(Vx) 1+ al\neXw 1+ erf(Vxy 7)1+ (1+ a) (N xw) )

e[ 1+ erf(\xu) 1+ anexw! T1+erf(\xw/ 7)]

In the present model, E11) contains all the new infor- electron species hardly affects the Bohm speed, much less
mation about the effect of two-temperature electrons on théhan what was anticipated by the thermal equilibrium model
Bohm speed. The case of single electron temperature can lo¢ Ref. [4].
studied by settinge=0, and the result is shown in Fig. 3. It Figure 5 shows the dependence of effective electron tem-
can be seen that for a reasonable value of sheath potentipérature@ on the sheath potential,,. There is a moderate
xw=2, the effect of nonthermal equilibrium d@ (thus, on  yariation of® from unity neary,,= 1, and the Bohm speed
the Bohm speedis small. This confirms the result of Ref. a3y have a moderate variation wheg is low. However,

[6]. It can also be seen that if there is an external interferencg) never recovers the harmonic average value of IR&.
(e.g., wall biasing to reduce the sheath potential below o in Fig. 5 as straight lines, which assumed that both

Xw=2, then the nonthermal eqwhbnum gffect on the BOhmcold and hot electron species are in their own thermal equi-
speed can reduce the Bohm speed significantly. librium states

The case of two-temperature electrons0) is plotted We note here that the present result does not indicate that

in Fig. 4 as a function of for different« values, wherey is . .
the hot temperature normalized to the cold temperature. Thtepe sheath potential itself is not affected by the nonthermal

i . ) ' ) equilibrium effect. In fact, the escape of hot electron species
sheath potentia,, is set at thregdotted ling and five(solid to the absorbing wall may increase the sheath potential in

lines) times the lower electron temperature. By comparingorder to keep the ambipolar flow relation with the ion flow.

Fig. 4 and Fig. 2, it can be seen that the difference from the_ - . ) S
thermal equilibrium modelFig. 2) is significant. The effec- This problem is presently under investigation by the authors.

tive temperatur® in Fig. 4 remains close to the lower elec-

tron temperatures,&~1), while that in Fig. 2 is the har- This work was supported by Korean Electronics and Tele-
monic average of the two temperatures. What is indicated bgommunications Research Institute and U.S. Department of
the present result is that the existence of high-temperaturénergy.
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