
PHYSICAL REVIEW E JANUARY 1997VOLUME 55, NUMBER 1
Effect of two-temperature electron distribution on the Bohm sheath criterion
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Department of Physics, Korea Advanced Institute of Science and Technology, Taejon 305-701, Republic of Korea

~Received 22 April 1996!

The effect of two-temperature electron distribution on the Bohm sheath criterion is studied in a collisionless
sheath layer in contact with a perfectly absorbing wall. A modified Maxwell-Boltzmann model is used for the
electron distribution functions, which considers the effect that the electrons above the sheath potential energy
do not reflect back into the plasma. The present model shows that the Bohm velocity at the sheath edge is much
more independent of the hotter species than what was understood previously with a simple Maxwell-
Boltzmann electron model.@S1063-651X~96!01611-X#

PACS number~s!: 52.40.Hf
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In many plasma devices, the electron velocity distribut
may not be a simple Maxwellian. Often, the electrons
found to have two-temperature Maxwellian distributio
@1–3#. Understanding the effect of two temperature elect
distribution on the Bohm speed has been of significant
portance because the Bohm speed enters as a boundary
dition in plasma modelings, determining the loss rate to
wall.

Previous analytic studies of Bohm sheath in a tw
electron-species plasma used a simple Maxwell-Boltzm
distribution to model each electron species in the she
layer @4,5#. This model may be justified under the assum
tion that each electron species is in the state of local ther
equilibrium. The model showed that the Bohm speed in
plasma with two-species electrons is equal to that with
electron species plasma whose temperature is equal to
harmonic average of the two temperature.

However, in a thin sheath layer, where the electron m
free path is longer than the sheath thickness, the local t
mal equilibrium assumption may not be justified. In order
have a more accurate understanding of the Bohm speed
plasma with two-temperature electron distribution, a m
realistic model for the electron distribution function needs
be considered. For plasmas with a single electron spe
this problem has been studied by Self@6#. He noticed that
some of the tail electrons, which are traveling toward
absorbing wall with their energy greater than the sheath
tential energy, do not bounce back into the plasma~see Fig.
1!. He concluded that inclusion of this phenomenon does
significantly affect the Bohm speed due to the smallness
such electron fraction. Thus, the assumption of local ther
equilibrium was approximately validated in a singl
electron-temperature problem, as far as the Bohm spee
concerned.

In a plasma with two-temperature electrons, thermal
ergy of the more energetic electron species may be gre
than the sheath potential energy. In this case, the fractio
the lost electrons which are not bounced back by the sh
potential may be significant within the energetic species,
the assumption of local thermal equilibrium may break do
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for the energetic species. In the present work, we study
two-temperature electron problem with the consideration
the lost electrons, which have greater energy than the sh
potential energy, and are not bounced back by the sh
potential. The model distribution function of the electrons w
choose will be based upon the Maxwell-Boltzmann for
with the elimination of the lost electron part in velocit
space.

In order to use a kinetic formulation of Bohm sheath c
terion @4,7#, we follow Ref. @7# and introduce the following
dimensionless quantities:

y5
mivx

2

2kTe
, x52

eU

kTe
, ne,i5

Ne,i

N0
, j5

x

lD
,

wherey is thex-directional ion kinetic energy normalized t
the electron thermal energykTe , x is the electron potentia
energy normalized tokTe , vx is the particle speed towar
the wall, n is the particle density normalized to be unity
the sheath edge, andj is the space coordinatex normalized
to the electron Debye length. In the present work, we
U50 at the sheath edge. The wall is located atx50 and,
thus, the sheath edge is atx5`.

FIG. 1. Truncation of electron distribution function in a nonthe
mal equilibrium model. Absorbing wall is atx50 and the sheath is
formed atx.0.
1213 © 1997 The American Physical Society
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The Bohm sheath condition can be obtained from the
quirement that the electric charge at the sheath edge is p
tive @7#,

r05S dnidx
2
dne
dx D ux50>0. ~1!

The quantityQ52(dne /dxux50)
21 can be interpreted a

an effective temperature of the total electrons. For the io
the flow energy is generally dominant over the thermal
ergy and the concept of effective temperature is not valid

The above condidtion, Eq.~1!, can be easily obtained
from Poisson’s equation using a similar technique used
Ref. @7#,

d2x

dj2
5ni~x!2ne~x!.

We multiply this equation bydx/dj and integrate, with the
boundary conditionsx,dx/dj →0 at the sheath edge~which
means that the potential perturbation by the wall fades a
at the sheath boundary!, to obtain

S dx

dj D 252E
0

x

dx@ni~x!2ne~x!#.

We, then, Taylor expand the densitiesne(x) andni(x) near
x50, and apply the quasineutralityne(0)5ni(0) to obtain

S dx

dj D 252E
0

x

dxxFdnidx Ux502
dne
dx Ux50G

5x2Fdnidx Ux502
dne
dx Ux50G ,

near the sheath edge. From this equation we can see tha
~1! must be satisfied.

The ion density gradient inx can be described from
kinetic knowledge we have: If the ion distribution functio

FIG. 2. Effective electron temperatureQ from Boyd and
Thompson model as a function of the hot electron temperature
malized to the cold electron temperature.
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f i(x,vx) is a one dimensional solution to Vlasov equatio
then it is a function of energy,

f i~x,vx!5 f i0SAvx
21

2eU

mi
D ~2!

where f i05 f i(0,vx). Calculating ion density fromf i , we
find

ni5E f i~x,vx!dv5E f i0SAvx
21

2eU

mi
D dvx

5E S 12
2eU

miv0
2D 21/2

f i0~v0!dv0

5E S 11
x

y0
D 21/2

f i0~v0!dv0 , ~3!

wherev0 is vx at the sheath edge andy05miv0
2/2kTe . Then,

dni
dx

ux5052E 1

2y0
f i0~v0!dv052

kTe
mi

E f i0~v0!

v0
2 dv0 .

~4!

The condition in Eq.~1! can, then, be changed into

^vx
22& i0<

mi

QkTe
, ~5!

where ^ & i0 means velocity average over ion distributio
function at the sheath edge. WhenQ51, this recovers the
usual Bohm sheath criterion in kinetic form.

Information on the effect of two-temperature electron d
tribution on sheath criterion is contained in the effective te
perature. For heuristic purpose, let us first consider the t
mal equilibrium case when the electron distribution is simp
modeled with two-temperature Maxwell-Boltzmann. If w
use the notationye5mevx

2/2kTe , we have for the one-
dimensional electron distribution functionf e ,

r-
FIG. 3. Effective electron temperatureQ from nonthermal equi-

librium model for single-temperature electrons in terms of the n
malized sheath potentialxw .
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f e~x,v !5C~e2~ye1x!1ae2~ye1x!/h!, ~6!

whereh(.1) is the temperature of the high energy electr
species as a ratio to the low energy electron species andC is
a normalization constant. Integrating Eq.~6!, we get

ne5E
2`

`

f edv5e2xE
2`

`

Ce2yedv1ae2x/hE
2`

`

Ce2ye /hdv

5
e2x1aAhe2x/h

11aAh
, ~7!

which satisfies the normalization condition (ne51 at
x50), and yields the effective temperature

Q52S dnedx Ux50D 21

5
11aAh

11a/Ah
. ~8!

This, together with Eq.~5!, was the previous sheath criterio
discussed in the literature@4,5,7# for plasmas with two-
electron components under the assumption of local ther
equilibrium. The behavior ofQ as a function ofh is shown
in Fig. 2 for a few different values ofa.

It should be noticed that, in comparing the above kine
result with those of Refs.@4#, @7#, and@5#, the density of the
hot component normalized to the cold component in
present model isaAh at the sheath edge. Then, the harmo
average of two temperature with density weighting,

nc1nh
QTe

5
nc
Te

1
nh
Th

,

yields Eq.~8!, wherenc is the density of cold electron com
ponent,nh5ncaAh is the density of hot electron compone
andTh5hTe is the temperature of the hot electron comp
nent. Thus, the Bohm speed from a two-Maxwellian mode

FIG. 4. Effective electron temperatureQ from nonthermal equi-
librium model, as a function of the hot electron temperatureh nor-
malized to the cold electron temperature. Dotted lines are
xw53 and solid lines are forxw55. Top lines are fora50.9,
middle lines fora50.6, and bottom lines fora50.3.
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equal to that with one electron species plasma where t
perature is equal to the harmonic average of the two temp
tures.

However, in a collisionless sheath, the electrons flow
to an absorbing wall with their energy above the sheath
tential energy will not bounce back by the sheath potent
Thus, among the electrons traveling back into the plasma,
tail part of distribution function corresponding to the ele
trons above the sheath potential energy should be trunca
Self @6# discussed this truncation effect in the case of a sin
electron species, concluding that it is small due to the f
that the truncated fraction of the electron density is smal
a practical level of sheath potential energy. However,
same cannot be guaranteed for the double-electron spe
case, in which the thermal energy of the hot species may
above the sheath potential energy. Thus, a large fractio
the hot electron species may be lost to the absorbing w
not coming back into the plasma. The assumption of lo
thermal equilibrium may now become a poor choice for t
hot electron species.

r

FIG. 5. Effective electron temperatureQ as a function of sheath
potentialxw ~a! for h53 and~b! for h59. Straight lines represen
the results of Boyd and Thompson model, and curved lines re
sent the present results. Dotted lines are fora50.9, dashed lines for
a50.6, and solid lines fora50.3.
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In order to put the truncation effect into the electron d
tribution functions, we choose the following model for th
electron distribution functions. We letxw denote the normal-
ized sheath potential at the wall. If an electron is traveling
the wall with higher energy thanxw , then it will overcome
the sheath potential and get absorbed at the wall~usually,
recombine with ions!. Thus, the part of the electron distribu
tion function corresponding to the incoming electrons tow
the plasma at above the sheath potential energyxw needs to
th
n
It
n

f.
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w
m
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th
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be truncated. The one-dimensional electron distribution fu
tion may then be modeled as

f e5H 0 if vx.0 and ye 1x .xw

C~e2~ye1x!1ae2~ye1x!/h! otherwise
~9!

wherevx.0 corresponds to the direction toward the plasm
Integrating thisf e in the velocity space, it is straightforwar
to obtain
ne5
exw2x@11erf~Axw2x!#1aAhe~xw2x!/h@11erf~A~xw2x!/h!#

exw@11erf~Axw!#1aAhexw /h@11erf~Axw /h!#
. ~10!

From thisne(x), we can calculate a new effective temperature

Q215
exw@11erf~Axw!#1a/Ahexw /h@11erf~Axw /h!#1~11a!/~Apxw!

exw@11erf~Axw!#1aAhexw /h@11erf~Axw/h!#
. ~11!
less
del

em-

oth
ui-

that
al
ies
l in
.
rs.

le-
t of
In the present model, Eq.~11! contains all the new infor-
mation about the effect of two-temperature electrons on
Bohm speed. The case of single electron temperature ca
studied by settinga50, and the result is shown in Fig. 3.
can be seen that for a reasonable value of sheath pote
xw>2, the effect of nonthermal equilibrium onQ ~thus, on
the Bohm speed! is small. This confirms the result of Re
@6#. It can also be seen that if there is an external interfere
~e.g., wall biasing! to reduce the sheath potential belo
xw52, then the nonthermal equilibrium effect on the Boh
speed can reduce the Bohm speed significantly.

The case of two-temperature electrons (a.0) is plotted
in Fig. 4 as a function ofh for differenta values, whereh is
the hot temperature normalized to the cold temperature.
sheath potentialxw is set at three~dotted line! and five~solid
lines! times the lower electron temperature. By compar
Fig. 4 and Fig. 2, it can be seen that the difference from
thermal equilibrium model~Fig. 2! is significant. The effec-
tive temperatureQ in Fig. 4 remains close to the lower ele
tron temperatures, (Q'1), while that in Fig. 2 is the har
monic average of the two temperatures. What is indicated
the present result is that the existence of high-tempera
e
be
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he
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y
re

electron species hardly affects the Bohm speed, much
than what was anticipated by the thermal equilibrium mo
of Ref. @4#.

Figure 5 shows the dependence of effective electron t
peratureQ on the sheath potentialxw . There is a moderate
variation ofQ from unity nearxw51, and the Bohm speed
may have a moderate variation whenxw is low. However,
Q never recovers the harmonic average value of Ref.@4#,
shown in Fig. 5 as straight lines, which assumed that b
cold and hot electron species are in their own thermal eq
librium states.

We note here that the present result does not indicate
the sheath potential itself is not affected by the nontherm
equilibrium effect. In fact, the escape of hot electron spec
to the absorbing wall may increase the sheath potentia
order to keep the ambipolar flow relation with the ion flow
This problem is presently under investigation by the autho

This work was supported by Korean Electronics and Te
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